Unreliability of Radiometric Dating and Old Age of the Earth

Rubidium—strontium method The radioactive decay of rubidium 87Rb to strontium 87Sr was the first widely used dating system that utilized the isochron method. Because rubidium is concentrated in crustal rocks, the continents have a much higher abundance of the daughter isotope strontium compared with the stable isotopes. A ratio for average continental crust of about 0. This difference may appear small, but, considering that modern instruments can make the determination to a few parts in 70, , it is quite significant. Dissolved strontium in the oceans today has a value of 0. Thus, if well-dated, unaltered fossil shells containing strontium from ancient seawater are analyzed, changes in this ratio with time can be observed and applied in reverse to estimate the time when fossils of unknown age were deposited. Dating simple igneous rocks The rubidium—strontium pair is ideally suited for the isochron dating of igneous rocks. As a liquid rock cools, first one mineral and then another achieves saturation and precipitates, each extracting specific elements in the process. Strontium is extracted in many minerals that are formed early, whereas rubidium is gradually concentrated in the final liquid phase. In practice, rock samples weighing several kilograms each are collected from a suite of rocks that are believed to have been part of a single homogeneous liquid prior to solidification.


These formations may have resulted from carcass burial in an anoxic environment with minimal bacteria, thus slowing decomposition. Stromatolites Lower Proterozoic stromatolites from Bolivia , South America Stromatolites are layered accretionary structures formed in shallow water by the trapping, binding and cementation of sedimentary grains by biofilms of microorganisms , especially cyanobacteria. While older, Archean fossil remains are presumed to be colonies of cyanobacteria , younger that is, Proterozoic fossils may be primordial forms of the eukaryote chlorophytes that is, green algae.

One genus of stromatolite very common in the geologic record is Collenia.

Paleoanthropologists use it mostly to date sites in the 1 to 5 million year old range. This is the critical time period during which humans evolved from their ape ancestors. A relatively new technique related to potassium-argon dating compares the ratios of argon to argon in volcanic rock.

View images by clicking on link or reduced image: Each image opens into a new window. These primitive, medium sized apes lived in rain forests between 18 and 22 million years ago. This species and others such as Dryopithecus existed before the hominid line diverged on the path to humans. This lineage ancestral gibbons is believed to have diverged from the great ape and human lineages between 17 and 25 Mya Avers, Oreopithecus ‘s hand closely matches the pattern of early hominids, with a grasping capability including firm pad-to-pad precision gripping that apes are unable to perform presumably as a response to similar functional demands to hominids Moya-Sola et al,


Limitations, Sources of Error and Accuracy Archaeological Applications Potassium Argon dating is effective for sites over , years in age and has been widely used in dating Pliocene and Pliestocene events. It is widely used in paleolithic archaeology and paleoanthropology and has been most widely used for dating early hominin sites where hominin activity can be found stratagraphicly between two lava flows.

It has been used particularly in East Africa. The most famous of these site are most probably Bed I of Olduvai Gorge which represents one of the earliest applications of the methods, and also at Hadar in Ethiopia, famous for the discovery of Lucy the Australopithecus afarensis. As with all such methods it is vital to be aware of the event which is being dated, and in this case this is the crystalisation of the rock.

D. Argon is more stable than potassium D. happens at a set rate The age of a rock sample can be determined by finding the relative amount of a parent isotope that has changed into a daughter isotope within the sample.

Shirey and James E. The loose crystals range from 1. Photo by Orasa Weldon. ABSTRACT It has been more than two decades since diamond ages have proven to be up to billions of years older than their host magmas of kimberlite or lamproite. Since then, there have been significant advances in the analysis of diamonds and their mineral inclusions, in the understanding of diamond-forming fluids in the mantle, and in the relationship of diamonds to the deep geology of the continents and the convecting mantle.

The occurrence of natural diamonds is remarkable and important to earth studies. This article reviews current thinking of where, how, when, and why natural diamonds form.


Measurement of rates of change[ change change source ] Records of timing are bedevilled by gaps in the fossil record, often at those crucial early stages when numbers are low and geographical distribution is severely restricted. Nevertheless, when a string of distinctly new lines appear within a short period, it seems reasonable to say that the rate of change has been surprisingly fast.

An example would be the appearance of new reptilian groups in the Upper Triassic.

Potassium argon dating half life potassium argon dating, abbreviated k ar dating, potassium argon how does potassium argon dating work dating half life is a radiometric dating method used accumulated to the amount of K potassium argon dating range long half-life.

An inert blanket of gas prevents any chemicals in the operation from reacting with oxygen and other substances present in air. Argon is also used in making “neon” lamps and in lasers. Discovery and naming Argon was discovered in However, English scientist Henry Cavendish had predicted the existence of argon years earlier. When Cavendish removed oxygen and nitrogen from air, he found that a very small amount of gas remained.

He guessed that another element was in the air, but he was unable to identify what it was. When Ramsay repeated Cavendish’s experiments in the s, he, too, found a tiny amount of unidentified gas in the air. But Ramsay had an advantage over Cavendish: Spectroscopy is the process of analyzing light produced when an element is heated. Ramsay studied the spectrum of the unidentified gas. He found a series of lines that did not belong to any other element. He was convinced that he had found a new element.

Meanwhile, Rayleigh was doing similar work at almost the same time. He made his discovery at about the same time Ramsay did.

Recent Advances in Understanding the Geology of Diamonds

Go Back Argon-Argon Dating and the Chicxulub Impact In the early s there was an intense controversy about the association of the Chicxulub Crater of the Mexican Yucatan Peninsula with the extinction of the dinosaurs in the period about 65 million years ago. The Cretaceous-Tertiary boundary in the geological age scale was associated with an iridium-rich layer which suggested that the layer was caused by an impact with an extraterrestrial object.

Because that time period, commonly referred to as the K-T boundary, was associated with the extinction of vast numbers of animals in the fossil record, much effort was devoted to dating it with potassium-argon and other methods of geochronology. The time of 65 million years was associated with the K-T boundary from these studies.

Other large impact craters such as the Manson crater in Iowa dated to 74 My were examined carefully as candidates for the cause of the extinction, but none were close to the critical time. Chicxulub was not so obvious as a candidate because much of the evidence for it was under the sea.

Examines the last two decades’ advances in analyzing and understanding the formation of natural diamonds, and their relation to the earth’s formation.

The attraction of the method lies in the fact that one of the daughter elements is argon which is an inert gas. This means that the geologist can plausibly assume that all argon gas escapes from the molten magma while it is still liquid. He thinks this solves his problem of not knowing the initial quantity of the daughter element in the past and not being able to go back in time and make measurements. He assumes the initial argon content is zero. He imagines that his radioactive hour glass sealed when the rock solidified, and his radioactive clock started running.

And he hopes the rock has remained sealed until the time he collected his sample. With these assumptions the geologist only needs to measure the relative amounts of potassium and argon in the rock at the present time to be able to calculate an age for the rock. Although it is a simple calculation the big question is whether his assumptions about the rock were correct. How can the geologist know? If the rock actually contained some argon when it solidified then the calculated age would be too old.

On the other hand, if the rock was later disturbed by a geological upheaval and lost argon the age would be too young. What he does is check his calculated age with the ages produced by other dating methods. In other words, he checks to see if his calculated result falls into the range where he expects it to fall, given the geological situation of where he found his rock.


Maximizes ability to distinguish between sp2 and sp3 carbon. C KLL acquisition conditions: Interpretation of XPS Spectra The C1s spectrum from a sample with high concentration of sp2 carbon will have a broad, asymmetric tail towards higher binding energy.

How radiometric dating works in general: Radioactive elements decay gradually into other elements. The original element is called the parent, and the result of the decay process is .

The J factor relates to the fluence of the neutron bombardment during the irradiation process; a denser flow of neutron particles will convert more atoms of 40K to 40Ar than a less dense one. However, in a metamorphic rock that has not exceeded its closure temperature the age likely dates the crystallization of the mineral. Thus, a granite containing all three minerals will record three different “ages” of emplacement as it cools down through these closure temperatures.

Thus, although a crystallization age is not recorded, the information is still useful in constructing the thermal history of the rock. Dating minerals may provide age information on a rock, but assumptions must be made. Minerals usually only record the last time they cooled down below the closure temperature, and this may not represent all of the events which the rock has undergone, and may not match the age of intrusion.

Thus, discretion and interpretation of age dating is essential. This technique allows the errors involved in K-Ar dating to be checked. Argon—argon dating has the advantage of not requiring determinations of potassium. Modern methods of analysis allow individual regions of crystals to be investigated. This method is important as it allows crystals forming and cooling during different events to be identified.

Recalibration[ edit ] One problem with argon-argon dating has been a slight discrepancy with other methods of dating. Thus the Cretaceous—Paleogene extinction when the dinosaurs died out – previously dated at

Radiometric dating

Radioactive decay[ edit ] Example of a radioactive decay chain from lead Pb to lead Pb. The final decay product, lead Pb , is stable and can no longer undergo spontaneous radioactive decay. All ordinary matter is made up of combinations of chemical elements , each with its own atomic number , indicating the number of protons in the atomic nucleus. Additionally, elements may exist in different isotopes , with each isotope of an element differing in the number of neutrons in the nucleus.

A particular isotope of a particular element is called a nuclide.

The potassium-argon (K-Ar) isotopic dating method is especially useful for determining the age of lavas. Developed in the s, it was important in developing the theory of plate tectonics and in calibrating the geologic time scale.

While there are numerous natural processes that can serve as clocks, there are also many natural processes that can reset or scramble these time-dependent processes and introduce uncertainties. To try to set a reasonable bound on the age, we could presume that the Earth formed at the same time as the rest of the solar system. If the small masses that become meteorites are part of that system, then a measurement of the solidification time of those meteorites gives an estimate of the age of the Earth.

The following illustration points to a scenario for developing such an age estimate. Some of the progress in finding very old samples of rock on the Earth are summarized in the following comments. It is a compound of zirconium, silicon and oxygen which in its colorless form is used to make brilliant gems. Samples more than 3. Older ages in the neighborhood of 4. The graph below follows the treatment of Krane of Rb-Sr studies of meteorite samples from Wetherill in order to show the nature of the calculation of age from isochrons.

Considering the relative scale of nuclei and atoms , nuclei are so remote from the outer edge of the atoms that no environmental factors affect them. However, there are two obvious problems with radioactive dating for geological purposes: The relative amounts of strontium and are determined with great precision and the fact that the data fits a straight line is a strong argument that none of the constituents was lost from the mix during the aging process.

Similar results are also obtained from the study of spontaneous fission events from uranium and plutonium

Clocks in the Rocks

Submit Tips For Editing We welcome suggested improvements to any of our articles. You can make it easier for us to review and, hopefully, publish your contribution by keeping a few points in mind. You may find it helpful to search within the site to see how similar or related subjects are covered. Any text you add should be original, not copied from other sources. At the bottom of the article, feel free to list any sources that support your changes, so that we can fully understand their context.

A fossil (from Classical Latin fossilis; literally, “obtained by digging”) is any preserved remains, impression, or trace of any once-living thing from a past geological es include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood, oil, coal, and DNA remnants. The totality of fossils is known as the fossil record.

Constitutional Convention Geochemical distribution of the elements Knowledge of the geochemical distribution of elements involves elucidation of the relative and absolute abundances of the chemical elements in the Earth and in its various parts—the crust, interior, atmosphere, and hydrosphere. This comprises a major part of the science of geochemistry , which is the study of the distribution of the chemical elements in space and time and the laws governing this distribution.

Basic knowledge in this area was largely accumulated during the 19th century. As noted above, the concept of a limited number of chemical elements had been established by , and the appearance of the periodic table , in , provided a new insight into the limitations on the number of elements. The output from North America was materially increased following the establishment of the United States Geological Survey in and the appointment of Frank W.

Clarke as chief chemist in In Clarke wrote the first of his many publications on the geochemical distribution of the elements. He assembled many chemical analyses of rocks from different continents, calculated average values, and showed that the overall chemical compositions of continental areas are remarkably similar. By combining these averages he obtained values for the abundances of the commoner elements in the continental crust of the Earth, values that have not been materially changed in spite of the vast increase of available data since that time.

He also estimated abundances for many of the less common elements; these estimates were based in many instances on very limited and imprecise data and subsequently have been improved. A further development of great significance was the assemblage of comprehensive data on the abundances of individual elements in terrestrial materials and in the Cosmos based on solar and meteorite abundances by the Norwegian geochemist Victor Moritz Goldschmidt during the s.

Goldschmidt also contributed to the understanding of elemental distribution within the Earth through his geochemical classification of the elements into lithophile, siderophile, chalcophile, and atmophile.

Potassium-argon Dating